1
0
Fork 0
mirror of https://github.com/shlomif/PySolFC.git synced 2025-04-05 00:02:29 -04:00
PySolFC/pysollib/hint.py
Roderik Ploszek ca808161cc Fix solver communication deadlocks
Calling wait() on process object that communicates through pipes causes
deadlocks when the pipes fill up. To fix this, communicate() method was used
to send data to the solver. Returned bytes objects were converted to BytesIO
objects to keep compatibility with existing processing.
2018-02-24 22:40:47 +01:00

1227 lines
41 KiB
Python

#!/usr/bin/env pytho
# -*- mode: python; coding: utf-8; -*-
# ---------------------------------------------------------------------------##
#
# Copyright (C) 1998-2003 Markus Franz Xaver Johannes Oberhumer
# Copyright (C) 2003 Mt. Hood Playing Card Co.
# Copyright (C) 2005-2009 Skomoroh
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ---------------------------------------------------------------------------##
# imports
import os
import time
import subprocess
import re
import sys
from io import BytesIO
# PySol imports
from pysollib.settings import DEBUG, FCS_COMMAND
from pysollib.mfxutil import destruct
from pysollib.util import KING
if sys.version_info > (3,):
unicode = str
# ************************************************************************
# * HintInterface is an abstract class that defines the public
# * interface - it only consists of the constructor
# * and the getHints() method.
# *
# * The whole hint system is exclusively used by Game.getHints().
# ************************************************************************
class HintInterface:
# level == 0: show hint (key `H')
# level == 1: show hint and display score value (key `Ctrl-H')
# level == 2: demo
def __init__(self, game, level):
pass
# Compute all hints for the current position.
# Subclass responsibility.
#
# Returns a list of "atomic hints" - an atomic hint is a 7-tuple
# (score, pos, ncards, from_stack, to_stack, text_color, forced_move).
#
# if ncards == 0: deal cards
# elif from_stack == to_stack: flip card
# else: move cards from from_stack to to_stack
#
# score, pos and text_color are only for debugging.
# A forced_move is the next move that must be taken after this move
# in order to avoid endless loops during demo play.
#
# Deal and flip may only happen if self.level >= 2 (i.e. demo).
#
# See Game.showHint() for more information.
def getHints(self, taken_hint=None):
return []
# ************************************************************************
# * AbstractHint provides a useful framework for derived hint classes.
# *
# * Subclasses should override computeHints()
# ************************************************************************
class AbstractHint(HintInterface):
def __init__(self, game, level):
self.game = game
self.level = level
self.score_flatten_value = 0
if self.level == 0:
self.score_flatten_value = 10000
# temporaries within getHints()
self.bonus_color = None
#
self.__clones = []
self.reset()
def __del__(self):
self.reset()
def reset(self):
self.hints = []
self.max_score = 0
self.__destructClones()
self.solver_state = 'not_started'
#
# stack cloning
#
# Create a shallow copy of a stack.
class AClonedStack:
def __init__(self, stack, stackcards):
# copy class identity
self.__class__ = stack.__class__
# copy model data (reference copy)
stack.copyModel(self)
# set new cards (shallow copy of the card list)
self.cards = stackcards[:]
def ClonedStack(self, stack, stackcards):
s = self.AClonedStack(stack, stackcards)
self.__clones.append(s)
return s
def __destructClones(self):
for s in self.__clones:
s.__class__ = self.AClonedStack # restore orignal class
destruct(s)
self.__clones = []
# When computing hints for level 0, the scores are flattened
# (rounded down) to a multiple of score_flatten_value.
#
# The idea is that hints will appear equal within a certain score range
# so that the player will not get confused by the demo-intelligence.
#
# Pressing `Ctrl-H' (level 1) will preserve the score.
def addHint(self, score, ncards, from_stack,
to_stack, text_color=None, forced_move=None):
if score < 0:
return
self.max_score = max(self.max_score, score)
# add an atomic hint
if self.score_flatten_value > 0:
score = (score // self.score_flatten_value) * \
self.score_flatten_value
if text_color is None:
text_color = self.BLACK
assert forced_move is None or len(forced_move) == 7
# pos is used for preserving the original sort order on equal scores
pos = -len(self.hints)
ah = (int(score), pos, ncards, from_stack, to_stack,
text_color, forced_move)
self.hints.append(ah)
# clean up and return hints sorted by score
def _returnHints(self):
hints = self.hints
self.reset()
hints.sort()
hints.reverse()
return hints
#
# getHints() default implementation:
# - handle forced moves
# - try to flip face-down cards
# - call computeHints() to do something useful
# - try to deal cards
# - clean up and return hints sorted by score
#
# Default scores for flip and deal moves.
SCORE_FLIP = 100000 # 0..100000
SCORE_DEAL = 0 # 0..100000
def getHints(self, taken_hint=None):
# 0) setup
self.reset()
game = self.game
# 1) forced moves of the prev. taken hint have absolute priority
if taken_hint and taken_hint[6]:
return [taken_hint[6]]
# 2) try if we can flip a card
if self.level >= 2:
for r in game.allstacks:
if r.canFlipCard():
self.addHint(self.SCORE_FLIP, 1, r, r)
if self.SCORE_FLIP >= 90000:
return self._returnHints()
# 3) ask subclass to do something useful
self.computeHints()
# 4) try if we can deal cards
if self.level >= 2:
if game.canDealCards():
self.addHint(self.SCORE_DEAL, 0, game.s.talon, None)
return self._returnHints()
# subclass
def computeHints(self):
pass
#
# utility shallMovePile()
#
# we move the pile if it is accepted by the target stack
def _defaultShallMovePile(self, from_stack, to_stack, pile, rpile):
if from_stack is to_stack or not \
to_stack.acceptsCards(from_stack, pile):
return 0
return 1
# same, but check for loops
def _cautiousShallMovePile(self, from_stack, to_stack, pile, rpile):
if from_stack is to_stack or not \
to_stack.acceptsCards(from_stack, pile):
return 0
#
if len(rpile) == 0:
return 1
# now check for loops
rr = self.ClonedStack(from_stack, stackcards=rpile)
if rr.acceptsCards(to_stack, pile):
# the pile we are going to move could be moved back -
# this is dangerous as we can create endless loops...
return 0
return 1
# same, but only check for loops only when in demo mode
def _cautiousDemoShallMovePile(self, from_stack, to_stack, pile, rpile):
if from_stack is to_stack or not \
to_stack.acceptsCards(from_stack, pile):
return 0
if self.level >= 2:
#
if len(rpile) == 0:
return 1
# now check for loops
rr = self.ClonedStack(from_stack, stackcards=rpile)
if rr.acceptsCards(to_stack, pile):
# the pile we are going to move could be moved back -
# this is dangerous as we can create endless loops...
return 0
return 1
shallMovePile = _defaultShallMovePile
#
# other utility methods
#
def _canDropAllCards(self, from_stack, stacks, stackcards):
assert from_stack not in stacks
return 0
# FIXME: this does not account for cards which are dropped herein
# cards = pile[:]
# cards.reverse()
# for card in cards:
# for s in stacks:
# if s is not from_stack:
# if s.acceptsCards(from_stack, [card]):
# break
# else:
# return 0
# return 1
#
# misc. constants
#
# score value so that the scores look nicer
K = KING + 1
# text_color that will display the score (for debug with level 1)
BLACK = "black"
RED = "red"
BLUE = "blue"
# ************************************************************************
# *
# ************************************************************************
class DefaultHint(AbstractHint):
# The DefaultHint is optimized for Klondike type games
# and also deals quite ok with other simple variants.
#
# But it completely lacks any specific strategy about game
# types like Forty Thieves, FreeCell, Golf, Spider, ...
#
# BTW, we do not cheat !
#
# bonus scoring used in _getXxxScore() below - subclass overrideable
#
def _preferHighRankMoves(self):
return 0
# Basic bonus for moving a card.
# Bonus must be in range 0..999
BONUS_DROP_CARD = 300 # 0..400
BONUS_SAME_SUIT_MOVE = 200 # 0..400
BONUS_NORMAL_MOVE = 100 # 0..400
def _getMoveCardBonus(self, r, t, pile, rpile):
assert pile
bonus = 0
if rpile:
rr = self.ClonedStack(r, stackcards=rpile)
if (rr.canDropCards(self.game.s.foundations))[0]:
# the card below the pile can be dropped
bonus = self.BONUS_DROP_CARD
if t.cards and t.cards[-1].suit == pile[0].suit:
# simple heuristics - prefer moving high-rank cards
bonus += self.BONUS_SAME_SUIT_MOVE + (1 + pile[0].rank)
elif self._preferHighRankMoves():
# simple heuristics - prefer moving high-rank cards
bonus += self.BONUS_NORMAL_MOVE + (1 + pile[0].rank)
elif rpile:
# simple heuristics - prefer low-rank cards in rpile
bonus += self.BONUS_NORMAL_MOVE + (self.K - rpile[-1].rank)
else:
# simple heuristics - prefer moving high-rank cards
bonus += self.BONUS_NORMAL_MOVE + (1 + pile[0].rank)
return bonus
# Special bonus for facing up a card after the current move.
# Bonus must be in range 0..9000
BONUS_FLIP_CARD = 1500 # 0..9000
def _getFlipSpecialBonus(self, r, t, pile, rpile):
assert pile and rpile
# The card below the pile can be flipped
# (do not cheat and look at it !)
# default: prefer a short rpile
bonus = max(self.BONUS_FLIP_CARD - len(rpile), 0)
return bonus
# Special bonus for moving a pile from stack r to stack t.
# Bonus must be in range 0..9000
BONUS_CREATE_EMPTY_ROW = 9000 # 0..9000
BONUS_CAN_DROP_ALL_CARDS = 4000 # 0..4000
BONUS_CAN_CREATE_EMPTY_ROW = 2000 # 0..4000
def _getMoveSpecialBonus(self, r, t, pile, rpile):
# check if we will create an empty row
if not rpile:
return self.BONUS_CREATE_EMPTY_ROW
# check if the card below the pile can be flipped
if not rpile[-1].face_up:
return self._getFlipSpecialBonus(r, t, pile, rpile)
# check if all the cards below our pile could be dropped
if self._canDropAllCards(r, self.game.s.foundations, stackcards=rpile):
# we can drop the whole remaining pile
# (and will create an empty row in the next move)
# print "BONUS_CAN_DROP_ALL_CARDS", r, pile, rpile
self.bonus_color = self.RED
return self.BONUS_CAN_DROP_ALL_CARDS + \
self.BONUS_CAN_CREATE_EMPTY_ROW
# check if the cards below our pile are a whole row
if r.canMoveCards(rpile):
# could we move the remaining pile ?
for x in self.game.s.rows:
# note: we allow x == r here, because the pile
# (currently at the top of r) will be
# available in the next move
if x is t or not x.cards:
continue
if x.acceptsCards(r, rpile):
# we can create an empty row in the next move
# print "BONUS_CAN_CREATE_EMPTY_ROW", r, x, pile, rpile
self.bonus_color = self.BLUE
return self.BONUS_CAN_CREATE_EMPTY_ROW
return 0
#
# scoring used in getHints() - subclass overrideable
#
# Score for moving a pile from stack r to stack t.
# Increased score should be in range 0..9999
def _getMovePileScore(self, score, color, r, t, pile, rpile):
assert pile
self.bonus_color = color
b1 = self._getMoveSpecialBonus(r, t, pile, rpile)
assert 0 <= b1 <= 9000
b2 = self._getMoveCardBonus(r, t, pile, rpile)
assert 0 <= b2 <= 999
return score + b1 + b2, self.bonus_color
# Score for moving a pile (usually a single card) from the WasteStack.
def _getMoveWasteScore(self, score, color, r, t, pile, rpile):
assert pile
self.bonus_color = color
score = 30000
if t.cards:
score = 31000
b2 = self._getMoveCardBonus(r, t, pile, rpile)
assert 0 <= b2 <= 999
return score + b2, self.bonus_color
# Score for dropping ncards from stack r to stack t.
def _getDropCardScore(self, score, color, r, t, ncards):
assert t is not r
if ncards > 1:
# drop immediately (Spider)
return 93000, color
pile = r.cards
c = pile[-1]
# compute distance to t.cap.base_rank - compare Stack.getRankDir()
if t.cap.base_rank < 0:
d = len(t.cards)
else:
d = (c.rank - t.cap.base_rank) % t.cap.mod
if d > t.cap.mod // 2:
d = d - t.cap.mod
if abs(d) <= 1:
# drop Ace and 2 immediately
score = 92000
elif r in self.game.sg.talonstacks:
score = 25000 # less than _getMoveWasteScore()
elif len(pile) == 1:
# score = 50000
score = 91000
elif self._canDropAllCards(
r, self.game.s.foundations, stackcards=pile[:-1]):
score = 90000
color = self.RED
else:
# don't drop this card too eagerly - we may need it
# for pile moving
score = 50000
score += (self.K - c.rank)
return score, color
#
# compute hints - main hint intelligence
#
def computeHints(self):
game = self.game
# 1) check Tableau piles
self.step010(game.sg.dropstacks, game.s.rows)
# 2) try if we can move part of a pile within the RowStacks
# so that we can drop a card afterwards
if not self.hints and self.level >= 1:
self.step020(game.s.rows, game.s.foundations)
# 3) try if we should move a card from a Foundation to a RowStack
if not self.hints and self.level >= 1:
self.step030(game.s.foundations, game.s.rows, game.sg.dropstacks)
# 4) try if we can move a card from a RowStack to a ReserveStack
if not self.hints or self.level == 0:
self.step040(game.s.rows, game.sg.reservestacks)
# 5) try if we should move a card from a ReserveStack to a RowStack
if not self.hints or self.level == 0:
self.step050(game.sg.reservestacks, game.s.rows)
# Don't be too clever and give up ;-)
#
# implementation of the hint steps
#
# 1) check Tableau piles
def step010(self, dropstacks, rows):
# for each stack
for r in dropstacks:
# 1a) try if we can drop cards
t, ncards = r.canDropCards(self.game.s.foundations)
if t:
score, color = 0, None
score, color = self._getDropCardScore(
score, color, r, t, ncards)
self.addHint(score, ncards, r, t, color)
if score >= 90000 and self.level >= 1:
break
# 1b) try if we can move cards to one of the RowStacks
for pile in self.step010b_getPiles(r):
if pile:
self.step010_movePile(r, pile, rows)
def step010b_getPiles(self, stack):
# return all moveable piles for this stack, longest one first
return (stack.getPile(), )
def step010_movePile(self, r, pile, rows):
lp = len(pile)
lr = len(r.cards)
assert 1 <= lp <= lr
rpile = r.cards[: (lr-lp)] # remaining pile
empty_row_seen = 0
r_is_waste = r in self.game.sg.talonstacks
for t in rows:
score, color = 0, None
if not self.shallMovePile(r, t, pile, rpile):
continue
if r_is_waste:
# moving a card from the WasteStack
score, color = self._getMoveWasteScore(
score, color, r, t, pile, rpile)
else:
if not t.cards:
# the target stack is empty
if lp == lr:
# do not move a whole stack from row to row
continue
if empty_row_seen:
# only make one hint for moving to an empty stack
# (in case we have multiple empty stacks)
continue
score = 60000
empty_row_seen = 1
else:
# the target stack is not empty
score = 80000
score, color = self._getMovePileScore(
score, color, r, t, pile, rpile)
self.addHint(score, lp, r, t, color)
# 2) try if we can move part of a pile within the RowStacks
# so that we can drop a card afterwards
# score: 40000 .. 59999
step020_getPiles = step010b_getPiles
def step020(self, rows, foundations):
for r in rows:
for pile in self.step020_getPiles(r):
if not pile or len(pile) < 2:
continue
# is there a card in our pile that could be dropped ?
drop_info = []
i = 0
for c in pile:
rr = self.ClonedStack(r, stackcards=[c])
stack, ncards = rr.canDropCards(foundations)
if stack and stack is not r:
assert ncards == 1
drop_info.append((c, stack, ncards, i))
i = i + 1
# now try to make a move so that the drop-card will get free
for di in drop_info:
c = di[0]
sub_pile = pile[di[3]+1:]
# print "trying drop move", c, pile, sub_pile
# assert r.canMoveCards(sub_pile)
if not r.canMoveCards(sub_pile):
continue
for t in rows:
if t is r or not t.acceptsCards(r, sub_pile):
continue
# print "drop move", r, t, sub_pile
score = 40000
score = score + 1000 + (self.K - r.getCard().rank)
# force the drop (to avoid loops)
force = (999999, 0, di[2], r, di[1], self.BLUE, None)
self.addHint(
score, len(sub_pile), r, t,
self.RED, forced_move=force)
# 3) try if we should move a card from a Foundation to a RowStack
# score: 20000 .. 29999
def step030(self, foundations, rows, dropstacks):
for s in foundations:
card = s.getCard()
if not card or not s.canMoveCards([card]):
continue
# search a RowStack that would accept the card
for t in rows:
if t is s or not t.acceptsCards(s, [card]):
continue
tt = self.ClonedStack(t, stackcards=t.cards+[card])
# search a Stack that would benefit from this card
for r in dropstacks:
if r is t:
continue
pile = r.getPile()
if not pile:
continue
if not tt.acceptsCards(r, pile):
continue
# compute remaining pile in r
rpile = r.cards[:(len(r.cards)-len(pile))]
rr = self.ClonedStack(r, stackcards=rpile)
if rr.acceptsCards(t, pile):
# the pile we are going to move from r to t
# could be moved back from t ro r - this is
# dangerous as we can create loops...
continue
score = 20000 + card.rank
# print score, s, t, r, pile, rpile
# force the move from r to t (to avoid loops)
force = (999999, 0, len(pile), r, t, self.BLUE, None)
self.addHint(score, 1, s, t, self.BLUE, forced_move=force)
# 4) try if we can move a card from a RowStack to a ReserveStack
# score: 10000 .. 19999
def step040(self, rows, reservestacks):
if not reservestacks:
return
for r in rows:
card = r.getCard()
if not card or not r.canMoveCards([card]):
continue
pile = [card]
# compute remaining pile in r
rpile = r.cards[:(len(r.cards)-len(pile))]
rr = self.ClonedStack(r, stackcards=rpile)
for t in reservestacks:
if t is r or not t.acceptsCards(r, pile):
continue
if rr.acceptsCards(t, pile):
# the pile we are going to move from r to t
# could be moved back from t ro r - this is
# dangerous as we can create loops...
continue
score = 10000
score, color = self._getMovePileScore(
score, None, r, t, pile, rpile)
self.addHint(score, len(pile), r, t, color)
break
# 5) try if we should move a card from a ReserveStack to a RowStack
def step050(self, reservestacks, rows):
if not reservestacks:
return
# FIXME
# ************************************************************************
# *
# ************************************************************************
class CautiousDefaultHint(DefaultHint):
shallMovePile = DefaultHint._cautiousShallMovePile
# shallMovePile = DefaultHint._cautiousDemoShallMovePile
def _preferHighRankMoves(self):
return 1
# ************************************************************************
# * now some default hints for the various game types
# ************************************************************************
# DefaultHint is optimized for Klondike type games anyway
class KlondikeType_Hint(DefaultHint):
pass
# this works for Yukon, but not too well for Russian Solitaire
class YukonType_Hint(CautiousDefaultHint):
def step010b_getPiles(self, stack):
# return all moveable piles for this stack, longest one first
p = stack.getPile()
piles = []
while p:
piles.append(p)
p = p[1:] # note: we need a fresh shallow copy
return piles
class Yukon_Hint(YukonType_Hint):
BONUS_FLIP_CARD = 9000
BONUS_CREATE_EMPTY_ROW = 100
# FIXME: this is only a rough approximation and doesn't seem to help
# for Russian Solitaire
def _getMovePileScore(self, score, color, r, t, pile, rpile):
s, color = YukonType_Hint._getMovePileScore(
self, score, color, r, t, pile, rpile)
bonus = s - score
assert 0 <= bonus <= 9999
# We must take care when moving piles that we won't block cards,
# i.e. if there is a card in pile which would be needed
# for a card in stack t.
tpile = t.getPile()
if tpile:
for cr in pile:
rr = self.ClonedStack(r, stackcards=[cr])
for ct in tpile:
if rr.acceptsCards(t, [ct]):
d = bonus // 1000
bonus = (d * 1000) + bonus % 100
break
return score + bonus, color
# FIXME
class FreeCellType_Hint(CautiousDefaultHint):
pass
class GolfType_Hint(DefaultHint):
pass
class SpiderType_Hint(DefaultHint):
pass
# ************************************************************************
# * FreeCell-Solver
# ************************************************************************
class Base_Solver_Hint:
def __init__(self, game, dialog, **game_type):
self.game = game
self.dialog = dialog
self.game_type = game_type
self.options = {
'max_iters': 10000,
'progress': False,
'preset': None,
}
self.hints = []
self.hints_index = 0
# correct cards rank if foundations.base_rank != 0 (Penguin, Opus)
if 'base_rank' in game_type: # (Simple Simon)
self.base_rank = game_type['base_rank']
else:
self.base_rank = game.s.foundations[0].cap.base_rank
# print 'game_type:', game_type
# print 'base_rank:', self.base_rank
def config(self, **kw):
self.options.update(kw)
def _card2str_format(self, fmt, card):
# row and reserves
rank = (card.rank-self.base_rank) % 13
return fmt % {'R': "A23456789TJQK"[rank], 'S': "CSHD"[card.suit]}
def card2str1(self, card):
# row and reserves
return self._card2str_format('%(R)s%(S)s', card)
def card2str2(self, card):
# foundations
return self._card2str_format('%(S)-s%(R)s', card)
# hard solvable: Freecell #47038300998351211829 (65539 iters)
def getHints(self, taken_hint=None):
if taken_hint and taken_hint[6]:
return [taken_hint[6]]
h = self.hints[self.hints_index]
# print 'getHints', taken_hint, h
if h is None:
return None
ncards, src, dest = h
thint = None
if len(src.cards) > ncards and not src.cards[-ncards-1].face_up:
# flip card
thint = (999999, 0, 1, src, src, None, None)
if dest is None: # foundation
cards = src.cards[-ncards:]
for f in self.game.s.foundations:
if f.acceptsCards(src, cards):
dest = f
break
assert dest
hint = (999999, 0, ncards, src, dest, None, thint)
self.hints_index += 1
# print hint
return [hint]
def colonPrefixMatch(self, prefix, s):
m = re.match(prefix + ': (\d+)', s)
if m:
self._v = int(m.group(1))
return True
else:
self._v = None
return False
def run_solver(self, command, board):
if DEBUG:
print(command)
kw = {'shell': True,
'stdin': subprocess.PIPE,
'stdout': subprocess.PIPE,
'stderr': subprocess.PIPE}
if os.name != 'nt':
kw['close_fds'] = True
p = subprocess.Popen(command, **kw)
bytes_board = board
if sys.version_info > (3,):
bytes_board = bytes(board, 'utf-8')
pout, perr = p.communicate(bytes_board)
if p.returncode in (127, 1):
# Linux and Windows return codes for "command not found" error
raise RuntimeError('Solver exited with {}'.format(p.returncode))
return BytesIO(pout), BytesIO(perr)
class FreeCellSolver_Hint(Base_Solver_Hint):
def _determineIfSolverState(self, line):
if re.search('^(?:Iterations count exceeded)', line):
self.solver_state = 'intractable'
return True
elif re.search('^(?:I could not solve this game)', line):
self.solver_state = 'unsolved'
return True
else:
return False
def _isSimpleSimon(self):
game_type = self.game_type
return ('preset' in game_type and
game_type['preset'] == 'simple_simon')
def _addBoardLine(self, l):
self.board += l + '\n'
return
def _addPrefixLine(self, prefix, b):
if b:
self._addBoardLine(prefix + b)
return
def importFile(solver, fh, s_game, self):
s_game.endGame()
s_game.newGame(
shuffle=True,
dealer=lambda: solver.importFileHelper(fh, s_game))
def importFileHelper(solver, fh, s_game):
game = s_game.s
stack_idx = 0
RANKS_S = "A23456789TJQK"
RANKS0_S = '0' + RANKS_S
RANKS_RE = '[' + RANKS_S + ']'
SUITS_S = "CSHD"
SUITS_RE = '[' + SUITS_S + ']'
CARD_RE = r'(?:' + RANKS_RE + SUITS_RE + ')'
def cards():
return game.talon.cards
def put(target, suit, rank):
ret = [i for i, c in enumerate(cards())
if c.suit == suit and c.rank == rank]
assert len(ret) == 1
ret = ret[0]
game.talon.cards = \
cards()[0:ret] + cards()[(ret+1):] + [cards()[ret]]
s_game.flipMove(game.talon)
s_game.moveMove(1, game.talon, target, frames=0)
def put_str(target, str_):
put(target, SUITS_S.index(str_[1]), RANKS_S.index(str_[0]))
def my_find_re(RE, m):
s = m.group(1)
assert re.match(r'^\s*(?:' + RE + r')?(?:\s+'
+ RE + r')*\s*$', s)
return re.findall(r'\b' + RE + r'\b', s)
for line_p in fh:
line = line_p.rstrip('\r\n')
m = re.match(r'^(?:Foundations:|Founds?:)\s*(.*)', line)
if m:
for gm in my_find_re(
r'(' + SUITS_RE + r')-([' + RANKS0_S + r'])', m):
for foundat in game.foundations:
suit = foundat.cap.suit
if SUITS_S[suit] == gm[0]:
for r in range(RANKS0_S.index(gm[1])):
put(foundat, suit, r)
break
continue
m = re.match(r'^(?:FC:|Freecells:)\s*(.*)', line)
if m:
g = my_find_re(r'(' + CARD_RE + r'|\-)', m)
while len(g) < len(game.reserves):
g.append('-')
for i, gm in enumerate(g):
str_ = gm
if str_ != '-':
put_str(game.reserves[i], str_)
continue
m = re.match(r'^:?\s*(.*)', line)
assert m
for str_ in my_find_re(r'(' + CARD_RE + r')', m):
put_str(game.rows[stack_idx], str_)
stack_idx += 1
assert len(cards()) == 0
def calcBoardString(self):
game = self.game
self.board = ''
is_simple_simon = self._isSimpleSimon()
#
#
b = ''
for s in game.s.foundations:
if s.cards:
b += ' ' + self.card2str2(
s.cards[0 if is_simple_simon else -1])
self._addPrefixLine('Founds:', b)
b = ''
for s in game.s.reserves:
b += ' ' + (self.card2str1(s.cards[-1]) if s.cards else '-')
self._addPrefixLine('FC:', b)
for s in game.s.rows:
b = ''
for c in s.cards:
cs = self.card2str1(c)
if not c.face_up:
cs = '<%s>' % cs
b += cs + ' '
self._addBoardLine(b.strip())
return self.board
def computeHints(self):
game = self.game
game_type = self.game_type
progress = self.options['progress']
board = self.calcBoardString()
#
if DEBUG:
print('--------------------\n', board, '--------------------')
#
args = []
# args += ['-sam', '-p', '-opt', '--display-10-as-t']
args += ['-m', '-p', '-opt', '-sel']
if progress:
args += ['--iter-output']
if DEBUG:
args += ['-s']
if self.options['preset'] and self.options['preset'] != 'none':
args += ['--load-config', self.options['preset']]
args += ['--max-iters', self.options['max_iters'],
'--decks-num', game.gameinfo.decks,
'--stacks-num', len(game.s.rows),
'--freecells-num', len(game.s.reserves),
]
#
if 'preset' in game_type:
args += ['--preset', game_type['preset']]
if 'sbb' in game_type:
args += ['--sequences-are-built-by', game_type['sbb']]
if 'sm' in game_type:
args += ['--sequence-move', game_type['sm']]
if 'esf' in game_type:
args += ['--empty-stacks-filled-by', game_type['esf']]
command = FCS_COMMAND+' '+' '.join([str(i) for i in args])
pout, perr = self.run_solver(command, board)
#
stack_types = {
'the': game.s.foundations,
'stack': game.s.rows,
'freecell': game.s.reserves,
}
if DEBUG:
start_time = time.time()
if progress:
# iteration output
iter_ = 0
depth = 0
states = 0
for sbytes in pout:
s = unicode(sbytes, encoding='utf-8')
if DEBUG >= 5:
print(s)
if self.colonPrefixMatch('Iteration', s):
iter_ = self._v
elif self.colonPrefixMatch('Depth', s):
depth = self._v
elif self.colonPrefixMatch('Stored-States', s):
states = self._v
if iter_ % 100 == 0:
self.dialog.setText(iter=iter_, depth=depth,
states=states)
elif re.search('^(?:-=-=)', s):
break
elif self._determineIfSolverState(s):
break
self.dialog.setText(iter=iter_, depth=depth, states=states)
hints = []
for sbytes in pout:
s = unicode(sbytes, encoding='utf-8')
if DEBUG:
print(s)
if self._determineIfSolverState(s):
next
m = re.match('Total number of states checked is (\d+)\.', s)
if m:
iter_ = int(m.group(1))
self.dialog.setText(iter=iter_)
m = re.match('This scan generated (\d+) states\.', s)
if m:
states = int(m.group(1))
self.dialog.setText(states=states)
m = re.match('Move (.*)', s)
if not m:
continue
move_s = m.group(1)
m = re.match(
'the sequence on top of Stack (\d+) to the foundations',
move_s)
if m:
ncards = 13
st = stack_types['stack']
sn = int(m.group(1))
src = st[sn]
dest = None
else:
m = re.match(
'(?P<ncards>a card|(?P<count>\d+) cards) '
'from (?P<source_type>stack|freecell) '
'(?P<source_idx>\d+) to '
'(?P<dest>the foundations|(?P<dest_type>freecell|stack) '
'(?P<dest_idx>\d+))\s*', move_s)
if not m:
continue
ncards = m.group('ncards')
if ncards == 'a card':
ncards = 1
else:
ncards = int(m.group('count'))
st = stack_types[m.group('source_type')]
sn = int(m.group('source_idx'))
src = st[sn] # source stack
dest_s = m.group('dest')
if dest_s == 'the foundations':
# to foundation
dest = None
else:
# to rows or reserves
dt = stack_types[m.group('dest_type')]
dn = int(m.group('dest_idx'))
dest = dt[dn]
hints.append([ncards, src, dest])
# print src, dest, ncards
#
if DEBUG:
print('time:', time.time()-start_time)
# print perr.read(),
self.hints = hints
if len(hints) > 0:
self.solver_state = 'solved'
self.hints.append(None) # XXX
# print self.hints
pout.close()
perr.close()
class BlackHoleSolver_Hint(Base_Solver_Hint):
BLACK_HOLE_SOLVER_COMMAND = 'black-hole-solve'
def calcBoardString(self):
board = ''
cards = self.game.s.foundations[0].cards
s = '-'
if (len(cards) > 0):
s = self.card2str1(cards[-1])
board += 'Foundations: ' + s + '\n'
for s in self.game.s.rows:
b = ''
for c in s.cards:
cs = self.card2str1(c)
if not c.face_up:
cs = '<%s>' % cs
b += cs + ' '
board += b.strip() + '\n'
return board
def computeHints(self):
game = self.game
game_type = self.game_type
board = self.calcBoardString()
#
if DEBUG:
print('--------------------\n', board, '--------------------')
#
args = []
# args += ['-sam', '-p', '-opt', '--display-10-as-t']
args += ['--game', game_type['preset'], '--rank-reach-prune']
args += ['--max-iters', self.options['max_iters']]
#
command = self.BLACK_HOLE_SOLVER_COMMAND + ' ' + \
' '.join([str(i) for i in args])
pout, perr = self.run_solver(command, board)
#
if DEBUG:
start_time = time.time()
result = ''
# iteration output
iter_ = 0
depth = 0
states = 0
for sbytes in pout:
s = unicode(sbytes, encoding='utf-8')
if DEBUG >= 5:
print(s)
m = re.search('^(Intractable!|Unsolved!|Solved!)', s.rstrip())
if m:
result = m.group(1)
break
self.dialog.setText(iter=iter_, depth=depth, states=states)
if (result == 'Intractable!'):
self.solver_state = 'intractable'
return
if (result == 'Unsolved!'):
self.solver_state = 'unsolved'
return
self.solver_state = 'solved'
hints = []
for sbytes in pout:
s = unicode(sbytes, encoding='utf-8')
if DEBUG:
print(s)
m = re.match('Total number of states checked is (\d+)\.', s)
if m:
iter_ = int(m.group(1))
self.dialog.setText(iter=iter_)
continue
m = re.match('This scan generated (\d+) states\.', s)
if m:
states = int(m.group(1))
self.dialog.setText(states=states)
continue
m = re.match(
'Move a card from stack ([0-9]+) to the foundations', s)
if not m:
continue
found_stack_idx = int(m.group(1))
ncards = 1
st = game.s.rows
sn = found_stack_idx
src = st[sn] # source stack
dest = None
hints.append([ncards, src, dest])
# print src, dest, ncards
#
if DEBUG:
print('time:', time.time()-start_time)
# print perr.read(),
self.hints = hints
self.hints.append(None) # XXX
# print self.hints
pout.close()
perr.close()
class FreeCellSolverWrapper:
def __init__(self, **game_type):
self.game_type = game_type
def __call__(self, game, dialog):
hint = FreeCellSolver_Hint(game, dialog, **self.game_type)
return hint
class BlackHoleSolverWrapper:
def __init__(self, **game_type):
self.game_type = game_type
def __call__(self, game, dialog):
hint = BlackHoleSolver_Hint(game, dialog, **self.game_type)
return hint